
Journal of Sound and <ibration (2000) 230(2), 379}392
doi:10.1006/jsvi.1999.2607, available online at http://www.idealibrary.com on
VIBRATION OF A FLEXIBLE PIPE CONVEYING VISCOUS
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The non-linear equations of motion of a #exible pipe conveying unsteadily
#owing #uid are derived from the continuity and momentum equations of
unsteady #ow. These partial di!erential equations are fully coupled through
equilibrium of contact forces, the normal compatibility of velocity at the #uid}
pipe interfaces, and the conservation of mass and momentum of the transient
#uid. Poisson coupling between the pipe wall and #uid is also incorporated in
the model. A combination of the "nite di!erence method and the method of
characteristics is employed to extract displacements, hydrodynamic pressure and
#ow velocities from the equations. A numerical example of a pipeline conveying
#uid with a pulsating #ow is given and discussed.
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1. INTRODUCTION

Unsteady #ow-induced vibration, which often occurs due to pump and valve
operations in pipeline systems and even in human circulation, is of concern to the
hydropower and petroleum industries and biomedical engineering research. A
recent and comprehensive literature review has already been published [1], where
the complex problem of pipes conveying #uid with a pulsating #ow is outlined.
Extensive investigations on this subject have been carried out [2}5]. In these
studies, the stability and resonance of pipes conveying #uid with an unsteady #ow
which has a time-dependent harmonic component superposed on a steady #ow are
examined. The e!ects of Poisson coupling and the pressure wave on the motion of
the pipe}#uid system have not, however, been considered. Such e!ects are also not
incorporated in a more general set of equations which has been proposed by Semler
et al. [6]. This neglect of Poisson coupling and waterhammer wave e!ects is
appropriate for a pipeline conveying a pulsating #uid #ow with a small pulsating
frequency. However, in the case of #uid-conveying pipelines with a larger pulsating
frequency, the e!ects of the Poisson coupling and the pressure wave should be
incorporated in the problem.

Even though numerous recent attempts have been made to couple the motion of
the pipe and #uid accurately, with the inclusion of the Poisson coupling and
pressure wave e!ects [7}9], there remains a need to investigate all mechanisms for
#uid}structure interaction. Wiggert et al. [10] developed an approach to predict
0022-460X/00/070379#14 $35.00/0 ( 2000 Academic Press
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liquid pressure and pipe dynamic response based on the method of characteristics,
which was applied to the Timoshenko beam theory to examine the axially coupled
behaviour of liquid-"lled pipes. This method, however, has its limitations, including
the necessity of using a very small time step due to the extremely high wave speed
within the pipe wall. Also, the equations of the waterhammer e!ect are not fully
coupled with the vibration of the #uid-conveying pipe in both the lateral and
logitudinal directions in this model. Recently, a more general set of equations
governing the motion of the pipe and #uid has been obtained by Lee et al. [11].
However, the partial di!erential equations derived are not fully coupled, and the
mechanism of the #uid}structure interaction is only partially illustrated. Even for
a higher #ow pulsation frequency, the e!ect of the pressure wave on the dynamic
response was not considered in their example. Later, Lee et al. [12] further
improved their previous model by including a circumferential strain e!ect, caused
by the internal #uid pressure. Thus, the e!ects of Poisson and friction coupling
mechanisms are fully considered, but radial shell vibration of pipes was not
considered in their "nite element formulation.

This paper presents the authors' attempt to formulate an improved and
generalized model which includes the e!ects of radial shell vibration of pipes and
initial axial tensions within the pipes besides both the Poisson and friction
coupling mechanisms. In our model the in#uence of vibration on hydrodynamic
pressure and #ow velocity is accounted for, and vice versa. Initial axial tension and
external excitation are also considered in our model so that it may be applied to the
analysis of initially stretched tubes conveying #uid with a pulsating #ow. The
pressure pulsation and dynamic response are investigated and an example is
given to illustrated an application of our model.

2. MODEL FORMULATION

Consider one-dimensional pulsating #ow of a Newtonian viscous incompressible
#uid in a circular #exible pipe with length ¸, cross-sectional area A

t
, mass per unit

length m
t
, initial axial tension ¹

0
, conveying a #uid of mass m

f
per unit length with

axial velocity ;, and pressure p, which varies with time and space. This #uid-
conveying pipe, which is simply supported at both ends, is subjected to an external
excitation. For generality, the pipeline is inclined at an angle of / degrees. The pipe
wall material is treated as a linear, homogeneous and isotropic elastic medium.

Let O be the origin at the centreline of the pipe at the point of support and let the
local co-ordinate x be in the pipe neutral axis at equilibrium and y normal to it. The
external excitation displacement w

0
(t) will be identical at any point within the

whole system. The pipeline experiences a transverse displacement w and an axial
displacement u from its equilibrium position at time t"0. The pipe wall also
experiences radial constriction and expansion due to the unsteady #ow. The
mechanism of the #uid}structure interaction is represented by the forces exerted by
the #uid #owing on the pipe wall, and vice versa. On the #uid}pipe interfaces the
contact force resultant is resolved into normal and tangential forces f

n
and f

t
(the

friction force) per unit length acting on the pipe walls and vice versa. These forces
are indicated in Figure 1.



Figure 1. Fluid and pipe elements together with an indication of forces.
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Upon taking a small #uid and pipe element with length dx, force balances on
a liquid element, and pipe element in the x and y directions lead to, respectively, the
lateral and longitudinal equations of motion of a #uid element:

!f
t
dx cos h!f

n
dx sin h!(pA cos h)@dx!m

f
gdx sin/"m

f
dxD2(x#u)/Dt2, (1)

f
n
dx cos h!f

t
dx sin h!(pA sin h)@dx!m

f
gdx cos/"m

f
dxD2(w#w

0
)/Dt2, (2)

where p is the hydrodynamic pressure, A is the cross-sectional area of the #uid, t is
the time, w

0
is the distance between the x co-ordinate and the datum line, g is the

acceleration due to gravity, h is the angle between the pipe element position and the
x-axis, D/Dt is the material derivative, the prime (@) denotes a derivative with
respect to x, and

sin h"w@ (1!u@!1
2
(w@)2), cos h"1!1

2
(w@)2, (3)

the lateral and longitudinal equations of motion of a pipe element:

(¹ cos h)@dx!(Q sin h)@dx#f
t
dx cos h#f

n
dx sin h!m

t
gdxsin/"m

t
dxuK , (4)

(¹ sin h)@dx#(Q cos h)@dx!f
n
dx cos h#f

t
dx sin h!cdxwR

!m
t
gdxcos/"m

t
dx(wK#wK

0
), (5)

where ¹ is the axial tension, Q is the resultant shear force, c is the coe$cient of
structural damping of the pipe, and ( 0 ) denotes a partial derivative with respect to
time t.

Strain comprises two components, namely a steady state strain due to an
external tension resultant, ¹

0
, and an oscillatory strain, e, due to the pipe vibration.
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The axial tension, ¹, and the axial strain, e, can be expressed, respectively, as

¹"¹
0
#EA

t
e, e"(u@#1

2
(w@)2). (6a, b)

where E is Young's modulus of the pipe. By substituting the term ( f
n
cos h!f

t
sin h)

from equation (2) into equation (5), then using equations (3) and (6), the following
equation, after some manipulation, can be obtained:

mwK#cwR #2m
f
;wR @#m

f
;Q w@#m

f
;;@w@#(pA)@w@#m

f
;2wA!¹

0
wA#(pA)wA

#EIw@@@@!(pA) (uAw@#u@wA#3
2
w@2wA)#(¹

0
!EA

t
)(uAw@#u@wA#3

2
w@2wA)

!mgcos/!EI (3u@@@wA#4uAw@@@#2u@w@@@@#w@u@@@@#2w@2w@@@@

#8w@wAw@@@#2wA2)#mwK
0
"0, (7)

where I is the inertia moment of the pipe and m"m
f
#m

t
.

By eliminating the term (!f
t
cos h!f

n
sin h) from equations (1) and (4), then

using equations (3) and (6), the following equation is obtained:

muK#2m
f
;uR @#m

f
;Q u@#m

f
;2uA!EA

t
uA#(¹

0
!EA

t
)w@wA

!EI(w@@@@w@#wAw@@@)!(pA)w@wA#m
f
;Q #m

f
;;@#(pA)@!mg sin /"0. (8)

Note that when the terms (pA)@, ;@, wK
0

and c are neglected, equations (7) and (8)
become identical to the equations of motion derived by Semler et al. [6].

Upon considering the conservation of mass [13], the continuity equation of
a #uid with unsteady #ow is found to be

o
f

DA
Dt

#A
Do

f
Dt

#o
f
A

L;
Lx

"0. (9)

The #uid bulk modulus of elasticity and the time rate of change of the cross-
sectional area of a control volume are given, respectively, by [13]

K"o
f

Dp/Dt
Do

f
/Dt

,
1
A

DA
Dt

"

D
p

Eh A
Dp
Dt

!

l
2A

D¹

Dt B, (10a, b)

where K is the #uid bulk modulus of elasticity, D
p
the internal diameter of the pipe,

h the pipe wall thickness, l the Poisson ratio. By substituting equation (6) into
equation (10b), the following equation can be derived:

AQ #;A@!
2AJA

JnEh
(pR #;p@)#

lJAA
t

Jnh
(uR @#w@wR @#;(uA#w@wA))"0. (11)
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Upon substituting equations (6) and (10) into equation (9), the continuity equation
of unsteady #ow can also be expressed as

pR #;p@#o
f
a2 (;@!2luR @)!2lo

f
a2(w@wR @#;uA#;w@wA)"0, (12)

where a is the #uid wave speed, de"ned through

a2"
K/o

f
1#KD

p
/(Eh)

. (13)

When the vibration of the pipe is not considered, equation (12) is equivalent to the
equation used by Wylie and Streeter [13]. The tangential force f

t
per unit length

acting on the pipe walls can be expressed in the form [13]

f
t
"q

0
nD

p
"n

8
D

p
o
f
f
s
D; D;, (14)

where f
s
is the Darcy}Weisbach friction factor [14], and q

0
is the shear stress on

#uid}pipe interface. By eliminating the term f
n
from equations (1) and (2), and using

equation (14), the following momentum equation of unsteady #ow can be obtained:

(pA)@#m
f
(;Q #;;@#f

s
D; D;/2D

p
#g sin /#gw@cos/)

#m
f
(uK#2;uR @#;Q u@#;2uA)#m

f
(wK#2;wR @#;Q w@

#;;@w@#;2wA#wK
0
)w@"0. (15)

The equations of waterhammer, equations (12) and (15), are fully coupled with the
vibration of the #uid-conveying pipe in the lateral and longitudinal directions.
When the pipe conveying #uid does not vibrate in either direction, equations (12)
and (15) become identical to the equations of continuity and momentum in the
classical waterhammer theory used by Wylie and Streeter [13].

Five non-linear partial di!erential equations (7), (8), (11), (12) and (15) governing
the motion of the #uid and pipe have been derived, and are fully coupled through
the equilibrium of contact forces and the normal compatibility of velocity in the
#uid}pipe interfaces, and conservation of mass and momentum of the transient
#uid. From equations (11) and (12), it can also be seen that the Poisson coupling
and the dilation due to the change of hydrodynamic pressure are considered. If the
non-linear terms associated with displacements, wK

0
, ¹

0
and c in equation (7), the

second to fourth and "fth to seventh terms in equation (8), the fourth term in
equation (12) and the third and fourth terms in equation (15) are neglected, these
equations become identical to the analytical model used by Lee et al. [11].

Boundary conditions to complement the equations of motion (7) and (8) for
a pipe simply supported at both ends are

w(0, t)"wA(0, t)"0, w(¸, t)"wA(¸, t)"0,

u (0, t)"uA(0, t)"0, u(¸, t)"uA(¸, t)"0. (16)
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As the third and fourth terms on the left-hand side of equation (15) are one order
smaller than the other terms, these two terms may be neglected in subsequent
analysis for simplicity.

To generalize, the system may be expressed in dimensionless terms by de"ning
the following quantities:

xN "
x
¸

, uN "
u
¸

, wN "
w
¸

, tN"S
EI
m

t
¸2

, AM "
A
¸2

, ;M ";¸S
m

f
EI

,

b"
m

f
m

, pN AM "
pA¸2

EI
, cN"

c¸2

JmEI
, u

1
"

¹
0
¸2

EI
, u

2
"

EA
t
¸2

EI
,

gN "
m

f
g¸3

EI
, a"

o
f
a2¸4

EI
, aN "a¸S

m
f

EI
, s"

Jnf
s

4
, H"

2I

Jnh¸3
,

f (tN )"
mwK

0
¸3

EI
. (17)

Substituting these terms into equations (7), (8), (11), (12), (15) and (16) yields the
following "ve dimensionless equations:

wNG#cN wN Q #2Jb;M wNQ @#Jb;MQ wN @#;M ;M @wN @#(AM pN @#pN AM @ )wN @#;M 2wN A!u
1
wN A#pN AM wN A

#wN @@@@!pN AM (uN AwN @#uN @wN A#3
2
wN @2wN A)#(u

1
!u

2
) (uN AwN @#uN @wN A#3

2
wN @2wN A)!gN cos/

!(3uN @@@wN A#4uN AwN @@@#2uN @wN @@@@#wN @uN @@@@#2wN @2wN @@@@#8wN @wN AwN @@@#2wN A2)"!f (tN ),

(18)

uNG#2Jb;M uNQ @#Jb;MQ uN @#;M 2uN A!u
2
uN A#(u

1
!u

2
)wN @wN A!(wN @@@@wN @#wN AwN @@@)

!pN AM wN @wN A#Jb;MQ #;M ;M @#(AM pN @#pN AM @)!gN sin/"0, (19)

JbAMQ #;M AM @!HAM JAM (JbpNQ #;M pN @)#u
2
HJAM (Jb (uNQ @#wN @wNQ @)

#;M (uN A#wN @wN A))"0, (20)

Jb;MQ #;;@#sD;M D;M /JAM #pN @AM #pN AM @#gN (sin/#wN @cos/)"0, (21)

JbpNQ #;M pN @#a(;M @!2lJbuNQ @!2lJbwN @wNQ @!2l;M uN A!2l;M wN @wN A)"0, (22)
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together with the boundary conditions

wN (0, tN )"wN A (0, tN )"0, wN (1, tN )"wN A(1, tN )"0,

uN (0, tN )"uN A (0, tN )"0, uN (1, tN )"uN A(1, tN )"0. (23)

3. NUMERICAL SOLUTION

A "nite di!erence method (FDM) is applied directly to solve the partial
di!erential equations (18)}(20) for the dynamic response of the #uid}pipe system.
The #uid}pipe system is discretized into n short segments. Terms in these
equations involving only the time derivatives with even order or spatial derivatives
are approximated by central di!erences, namely,
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"
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"
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i
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A
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, (24)

where the superscript i indicates the time step, i"1, 2,2, s and s is the total
number of time steps; the subscript j indicates the spatial node, j"1, 2,2, n#1
and (n#1) is the total number of spatial nodes; the dimensionless segment length is
DxN "1/n. For simplicity, forward di!erences with respect to time are used for terms
associated with pressure, velocity and area in equations (18) and (19). Backward
di!erences with respect to time are used for the terms associated with displacements
of "rst order in equations (18)}(22), i.e.,
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The method of characteristics (MOC) is applied to the partial di!erential
equations (21) and (22), and the partial di!erential terms associated with #ow
velocity and hydrodynamic pressure can be rewritten as ordinary di!erential ones
compatible with two characteristic lines. The partial di!erential terms associated
with displacements in equations (21) and (22) are treated by a FDM. The following
two sets of equations of the characteristics (C` and C~) can be obtained:

C`: G
d;M
dtN

#

1
aN

dpN
dtN

#

s

JbAM
D;M D;M !2laN AuNQ @#wN @wNQ @#

1

Jb
;M uN A#

1

Jb
;M wN @wN AB

#(1/Jb)pN AM @#(gN /Jb) (sin/#wN @cos/)"0,

dxN
dtN

"

1

Jb
(;M #aN ), H .

(26)

C~: G
d;M
dtN

!

1
aN

dpN
dtN

#

s

JbAM
D;M D;M #2laN AuNQ @#wN @wNQ @#

1

Jb
;M uN A#

1

Jb
;M wN @wN AB

#(1/Jb)pN AM @#(gN /Jb) (sin/#wN @cos/)"0,

dxN
dtN

"

1

Jb
(;M !aN ), H .

(27)

As the combination of the FDM and the MOC is employed for the analysis of
dynamic response of a pipeline conveying #uid with unsteady #ow, DtN /DxN 2"
0)01JEI/m and DtN /DxN "Jb/(;M #aN ) are chosen for the FDM and MOC
respectively during computation to ensure numerical stability. In this analysis,
aN <;M and the in#uence of the change of cross-sectional area AM on the wave speed is
neglected. During the transient response of the system, necessary boundary and
initial conditions are imposed on equations (26) and (27); #ow velocity and
hydrodynamic pressure can then be solved. With known velocities and pressures, it
is possible to solve equations (18)}(20) to determine the internal cross-sectional
area and displacements of the pipe. The displacements and cross-sectional area of
the pipe will now permit the solution of equations (26) and (27) again using the
boundary conditions and previous parameters. This iterative procedure may be
repeated for the necessary time period.

4. A NUMERICAL EXAMPLE

A program was written to compute the dynamic response of a pipeline conveying
#uid with a pulsating #ow, and to examine the e!ect of the pressure wave on the
vibration and vice versa. For the numerical calculation, the pipeline system used by
Lee et al. [11] was followed. The pipeline is inclined and simply supported at
both ends. The pulsating #ow velocity, ;";

0
(1#k cosut), is obtained by the
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operation of a valve located downstream. At the entry section, water head is
assumed to be constant. The following dimensionless variables are used:

DM "D
p
/¸, X"u¸2Jm/EI, (28)

where u is the valve frequency, ;
0

is the constant mean #ow velocity, and k is
the small excitation parameter. The pipeline conveying #uid has the following
characteristics: ;M

0
"1)0, gN "0)05, pN

0
"1)0, /"0)3, f

s
"0)02, b"0)3, DM "0)05,

k"0)15. As lateral, longitudinal and radial vibration coupling and waterhammer
have been considered in this analysis, more dimensionless parameters to
complement the closed-form solution of equations (18)}(20), (26) and (27) are
required as follows: h/D

p
"0)05, u

1
"cN"0, a"2)1, l"0)35, K/E"3)738.

To initiate vibrations, initial static distributed displacements, which start from
the equilibrium position of the pipeline conveying #uid, were imposed. The pipeline
was discretized into 20 short segments. The computed hydrodynamic pressures of
the #uid and displacements of the pipe are compared with the existing results [11]
and results obtained by using Lee's model [11], outlined in Appendix A.

Figure 2 shows the comparison of results obtained by using our model with
existing results [11]. The pressure #uctuation computed by using our model is
much larger than the ones obtained by neglecting the e!ect of waterhammer.
Despite the large di!erence in pressure, lateral displacements obtained by our
model are a little larger than those in reference [11].

Figures 3 and 4 show the e!ect of the pulsation frequency, X, on the dynamic
response of the pipeline conveying #uid at xN "0)25. The comparison of
hydrodynamic pressure, displacement and #ow velocity histories obtained by using
our model with those obtained by using Lee's model [11] has been made for X"5
and 1. For these cases, lateral displacements remain very close, but there is a much
bigger di!erence in the frequency of lateral vibration between the two methods, due
to the waterhammer wave and the lateral, longitudinal and radial vibration
coupling as well.

It can be seen from Figures 2}4 that the transient hydrodynamic pressure wave
and vibration coupling trigger the vibration of the pipeline conveying #uid with
a higher frequency. As the pulsating frequency decreases, hydrodynamic pressures
and longitudinal displacements obtained by our model decrease dramatically.

Figures 3 and 4 also show that the hydrodynamic pressures are composed of two
periodic components, one due to the pulsating #ow and the other due to the water
hammer waves. It is observed in Figure 4 that the waterhammer frequency is 15
times the pulsation frequency. Decreasing the pulsation frequency, the #ow
velocities at xN "0)25 draw gradually close to the #ow velocities at the out#ow
section.

5. CONCLUSIONS

The "ve non-linear equations governing the motion of a pipeline conveying #uid
with unsteady #ow have been derived. These fully coupled partial di!erential
equations can be solved by the combination of a "nite di!erence method and



Figure 2. Dynamic response of pipe conveying #uid at xN "0)25 for X"16)5.#,* Present model;
*, - - - - reference [11].
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Figure 3. Dynamic response of pipe conveying #uid at xN "0)25 for X"5.#, * Present model;
*, - - - - Lee's model [11].
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a method of characteristics to predict more accurately the dynamic response of
the system, and the hydrodynamic pressures and #ow velocities of the #uid.
Poisson coupling, the equilibrium of #uid}pipe interface forces and the normal
compatibility of #uid}pipe interface velocities have been considered in our model.
The displacement, hydrodynamic pressures and #ow velocities obtained by our
model for a simply supported pipe conveying a sinusoidal #ow were compared with
existing theoretical results and results obtained by using another model [11].
Transient hydrodynamic pressure waves trigger a vibration of the pipeline with
a higher frequency. With increasing pulsation frequencies, longitudinal vibration
tends to be larger. The magnitudes of hydrodynamic pressures are larger than those



Figure 4. Dynamic response of pipe conveying #uid at xN "0)25 for X"1.#, * Present model;
*, - - - - Lee's model [11].
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which were obtained without full consideration of the #uid}structure interaction.
Although these results appear promising, they must be con"rmed experimentally.
The experimental set up and comparison with numerical results will be the subject
of a future paper.
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APPENDIX A: LEE'S MODEL

The axial and transverse vibrational equations of a pipeline and the #uid
continuity and momentum equations derived by Lee et al. [11] are given by
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Numerical calculation of the dynamic response of a pipeline for several #ow
pulsation frequencies was performed by Lee et al. using the following dimensionless
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equations which were obtained after neglecting small coupling terms and assuming
u"0 and ;M @"0 [11]:

wNG#2Jb;M wNQ @#Jb;MQ wN @#pN @wN @#;M 2wN A#pN wN A#wN @@@@#gN cos /"0, (A5)

Jb;M Q #sD;M D;M #pN @#gN (sin/#wN @cos /)"0. (A6)

Equations (A5) and (A6) together with the assumption were called Lee's simpli"ed
model of equations (A1)}(A4), and solved by using a central di!erence method.
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